SADLER MATHEMATICS METHODS UNIT 2

WORKED SOLUTIONS

Chapter 2 Exponential functions

Exercise 2A

Question 1

x	0	1	2	3	4	5
у	1	3	9	27	81	243

Question 2

x	0	1	2	3	4	5
у	1	7	49	343	2401	16 807

Question 3

x	0	1	2	3	4	5
у	1.5	3	6	12	24	48

Question 4

x	0	1	2	3	4	5
У	1.75	14	112	896	7168	57 344

x	0	1	2	3	4	5
У	2	4	8	16	32	64

Question 6

x	0	1	2	3	4	5
у	10	40	160	640	2560	10 240

Question 7

x	0		1		2		3		4	
у	1		2		5		10		17	
]	1		3	4	5	, ,	7	
			4	2	4	2	4	2		-

A constant second difference of 2 indicates a quadratic relationship with $a = 1 \implies y = x^2 + bx + c$

When $x = 0, y = 1 \Longrightarrow c = 1$

When x = 1 $y = 1(1)^{2} + b(1) + 1 = 2$ 2 + b = 2b = 0

Required equation $y = x^2 + 1$

x	0		1		2		3		4	
у	1		4		16		64		256	
		×	4	×	4	×	4	×	4	

A constant ratio of 4 indicates the relationship is exponential, base 4. $\Rightarrow y = a \times 4^x$

When x = 0, $y = a.(4^{\circ}) = 1$ a = 1

Required equation $y = 4^x$

Question 9

x	0		1		2		3		4	
у	3		5		7		9		11	
		2	2	4	2	2	2	4	2	

A constant first difference of 2 indicates a linear relationship with a gradient of 2. $\Rightarrow y = 2x + c$

When $x = 0, y = 3 \Longrightarrow c = 3$

Required equation y = 2x + 3

A constant second difference of 4 indicates a quadratic relationship with a = 2. $\Rightarrow y = 2x^2 + bx + c$

When x = 0, $y = 0 \Longrightarrow c = 0$

When x = 1, $y = 2(1)^{2} + b(1) = 2$ 2 + b = 2b = 0

Required equation $y = 2x^2$

Question 11

x	0		1		2		3		4	
у	1.5		12		96		768		614	4
		×	8	×	8	×	8	×	8	

A constant ratio of 8 indicates the relationship is exponential, base 8. $\Rightarrow y = a \times 8^x$

When x = 0, $y = a.(8^{\circ}) = 1.5$ a = 1.5

Required equation $y = 1.5 \times 8^x$

x	0		1		2		3		4	
у	1		5		25		125		625	
		×	5	×	5 ×		5 ×		5	

A constant ratio of 5 indicates the relationship is exponential, base 5. $\Rightarrow y = a \times 5^x$

When x = 0, $y = a.(5^{\circ}) = 1$ a = 1

Required equation $y = 5^x$

Question 13

x	0		1		2		3		4	
у	0		2		6		12		20	
		2	2	2	4	6	5	8	3	
			2	2	2	2	4	2		

A constant second difference of 2 indicates a quadratic relationship with a = 1. $\Rightarrow y = x^2 + bx + c$

When x = 0, $y = 0 \Rightarrow c = 0$

When x = 1, $y = 1(1)^{2} + b(1) = 2$ 1 + b = 2b = 1

Required equation $y = x^2 + x$

x	0		1		2		3		4	
у	1		6		36		216		129	6
		×	6	×	6	×	6	×	6	

A constant ratio of 6 indicates the relationship is exponential, base 6. $\Rightarrow y = a \times 6^x$

When x = 0, $y = a.(6^{\circ}) = 1$ a = 1

Required equation $y = 6^x$

Question 15

x	0		1		2		3		4	
у	3		6		12		24		48	
		×	2	Х	2	Х	2	Х	2	

A constant ratio of 2 indicates the relationship is exponential, base 2. $\Rightarrow y = a \times 2^x$

When x = 0, $y = a.(2^{0}) = 3$ a = 3

Required equation $y = 3 \times 2^{x}$

x	1	2	3	4	5
у	60	30	20	15	12

No constant differences or ratios present. A reciprocal relationship exists $\Rightarrow xy = 60$.

Question 17

A constant third difference of 6 indicates a cubic relationship with a = 1. $\Rightarrow y = ax^3 + bx^2 + cx + d$. (See Miscellaneous Exercise 1 Question 1)

When x = 0, $y = 1 \Rightarrow d = 1$ We currently have $y = x^3 + bx^2 + cx + 1$ When x = 1, y = 1 + b + c + 1 = 2 b + c = 0When x = 2, y = 8 + 4b + 2c + 1 = 9 4b + 2c = 0By simultaneous equations or CP, b = 0, c = 0

Required equation $y = x^3 + 1$

Alternatively students may have noticed the numbers are all one more than the cubic numbers 1, 8, 27, 64...

x	0		1	2		3		4	
у	20		17	14		11		8	
			3	3	_	3		3	

A constant first difference decreasing by 3 indicates a linear relationship with a gradient of -3. $\Rightarrow y = -3x + c$

When x = 0, $y = 20 \Longrightarrow c = 20$

Required equation y = -3x + 20

Question 19

All graphs pass through (0, 1). The graphs share the same basic shape. As the *x* values increase, so do the *y* values without limit. As the *x* values decrease so do the *y* values, approaching but never touching the *x*-axis. We say it is asymptotic to the *x*-axis. The values are always positive. As the value of *a* increases, so does the rate at which the *y* values increase.

The graph becomes steeper as *a* increases.

Changing the value of *a* changes the *y*-intercept

of the function to (0, a).

It appears to stretch or vertically dilate the original function.

Question 21

The value of *k* translates the graph vertically.

Graphs of the form $y = a^{x} + k$ translate $y = a^{x} k$ units upwards.

Graphs of the form $y = a^x - k$ translate $y = a^x k$ units downwards. The distance of the *y*-intercept from (0, 1) indicates the value of *k*. Similarly the distance of the horizontal asymptote from *x*-axis will indicate the value of *k*.

It is possible for these graphs to have an *x*-intercept.

Changing the value of k translates the graph horizontally.

Graphs of the form $y = a^{x+k}$ translate $y = a^x k$ units left.

Graphs of the form $y = a^{x-k}$ translate $y = a^{x} k$ units right.

Question 23

а

x	0	1	2	3
у	1	2	4	8

The *y* values are doubling $\Rightarrow y = 2^x$

b

x	0	1	2
у	1	3	9

The *y* values are tripling $\Rightarrow y = 3^x$

b

	lit Action Int	eractive	9	X				
0.5 <u>1</u> 1⇒2	b ∫dx Sim	P <u>fdx</u>	▼₩	▼►				
solve(25×1.04^x=40								
	{x=	=11.98	355643	3}				
				V				
Alg	Decimal	Real	Deg	(111)				

x = 11.984In approximately 12 years.

x = 28.011In approximately 28 years.

x = 39.995 In approximately 40 years.

x	2	3
у	1	3

y values are tripling indicating $y = 3^x$.

The point (2, 1) indicates a horizontal translation of 2 units to the right $\Rightarrow y = 3^{x-2}$.

b

а

x	0		1		2		3	
у	3		4		6		10	
		1		2	2	2	1	

The differences between y values are 1, 2, 4 indicating $y = 2^x$.

The point (0, 3) indicates a vertical translation of 2 units $\Rightarrow y = 2^x + 2$.

x	2		3		4		5	
у	1		2		4		8	
]	1	4	2	2	4	

The y values are 1, 2, 4 indicating $y = 2^x$.

The point (2, 1) indicates a horizontal translation of 2 units to the right $\Rightarrow y = 2^{x-2}$.

d

x	0		1		2	
у	-1		1		7	
		4	2	6	5	

The graph appears to have an asymptote at y = -2, suggesting $y = a^x - 2$.

If we translate the graph up two units, the y values become 1, 3, 9 clearly indicating a = 3.

 $y = 3^{x} - 2$

е

x	-1	0	1
у	3	5	11

The graph appears to have an asymptote at y = 2, suggesting $y = a^{x} + 2$.

If we translate the graph down two units, the y values become 1, 3, 9 clearly indicating a = 3.

 $y = 3^{x} + 2$

The point (-1, 3) suggests a horizontal translation of 1 unit left $\Rightarrow y = 3^{x+1} + 2$.

x	2	3	4	5
у	-1	0	2	6

The graph appears to have an asymptote at y = -2, suggesting $y = a^x - 2$.

If we translate the graph up two units, the y values become 1, 2, 4, 8 clearly indicating a = 2.

$$y = 2^x - 2$$

The point (2, -1) suggests a horizontal translation of 2 units right $\Rightarrow y = 2^{x-2} - 2$.

f

Exercise 2B

Question 1

Consider the period 1995 to 2000 and working with the population in millions:

 $26 = 18r^{5}$ $r^{5} = \frac{26}{18}$ $r = \sqrt[5]{\frac{26}{18}}$ = 1.076 ≈ 1.08

Consider the period 2000 to 2010:

$$56 = 26r^{10}$$
$$r^{10} = \frac{56}{26}$$
$$r = \sqrt[10]{\frac{56}{26}}$$
$$= 1.079$$
$$\approx 1.08$$

Consider the period 2000 to 2007:

$$9000 = 12400r^{7}$$

$$r^{7} = \frac{9000}{12400}$$

$$r = \sqrt[7]{\frac{9000}{12400}}$$

$$= 0.955$$

$$7500 = 9000r^{7}$$

$$r^{4} = \frac{7500}{9000}$$

$$r = \sqrt[4]{\frac{7500}{9000}}$$

$$= 0.955$$

A ratio of 0.955 is equivalent to a 4.5% decrease each year.

Question 3

 $\frac{45.8}{45} = 1.0178$ $\frac{46.6}{45.8} = 1.0175$ $\frac{47.5}{46.6} = 1.0193$

Average of three growth rates ≈ 1.0182 , so we will assume an 18% growth rate overall.

In 2027, 14 years of growth has occurred.

 $P = 47.5 \times 1.018^{14}$

= 60.98 million

Approximately 61 million.

 $\frac{16500}{18100} = 0.917$ $\frac{15200}{16500} = 0.921$ $\frac{14000}{15200} = 0.921$

Let us assume a growth rate of 92% on each year, (decreasing by 8% each year).

IF we consider 2010 to be t = 0, 2023 can be represented as t = 13.

 $P = 18 \times 0.92^{13}$ = 6.1

We could expect approximately 6 100 animals.

Question 5

a $N = Ak^{N-1989}$ When N = 1989, $80 = Ak^{0}$ A = 80When N = 1999 $170 = 80k^{10}$ $k^{10} = \frac{170}{80}$ $k = \sqrt[10]{\frac{170}{80}}$ $= \left(\frac{170}{80}\right)^{0.1}$ = 1.08

b 8% increase

C $N = 80 \times 1.08^{(2024 - 1989)}$ = 80 × 1.08³⁵ ≈ 1200

 $P = ak^{n}$ After 6 days $\Rightarrow 450 = ak^{6}$ After 4 days $\Rightarrow 530 = ak^{5}$ $\frac{ak^{6}}{ak^{5}} = \frac{450}{530}$ k = 0.85 $530 = a(0.85)^{5}$ $a = \frac{530}{0.85^{5}}$ = 1194

The initial population was approximately 1200 frogs.

Question 7

а 68 29 b $68 = ka^{3}$ С $29 = ka^8$ $\frac{29}{68} = a^5$ $a = \sqrt[5]{\frac{29}{68}}$ = 0.84 $68 = k(0.84)^3$ $k\approx\!115$ $P = 115 \times 0.84^{\circ}$ d =115 е $10 = 115(0.84)^t$ By classpad t = 14

a $P = ka^t$

The initial value is $80 \implies k = 80$

When
$$t = 3, P = 62$$

 $62 = 80a^{3}$
 $a^{3} = \frac{62}{80}$
 $a = \sqrt[3]{\frac{62}{80}}$
 $= 0.92$

b

In 2017, t = 3 $P = 80(0.92)^3$ = 27

c $20 = 80(0.92)^t$ By classpad, t = 16.6During the 17th year, 2021

Question 9

- **a** When t=0, $P_A = 10\ 000$ and $P_B = 1000$
- **b** $P_A = 10000(0.75)^3 = 4218.75$ $P_B = 1000(1.09)^3 = 1295.03$ $P_A = 4200$ and $P_B = 1300$
- **c** $1000(0.75)^t = 1000(1.09)^t$ By classpad, t = 6.2

a Initial value $850 \Rightarrow k = 850$

When
$$t = 3, N = 630$$

 $630 = 850a^{3}$
 $a^{3} = \frac{630}{850}$
 $a = \sqrt[3]{\frac{630}{850}}$
 $= 0.905$

b

 $212.5 = 850(0.905)^t$ By classpad, t = 13.88after 14 weeks

Miscellaneous exercise two

Question 1

- **a** II
- **b** IV
- c III
- d I
- e III
- f IV
- g III
- h I

Question 2

 $x^2 = 49$ а $x = \pm 7$ $x^2 = 100$ b $x = \pm 10$ $x^3 = 1000$ С x = 10d $2^{x} = 4$ $=2^{2}$ x = 2е $3^{x} = 81$ $=3^{4}$ x = 4f $5^{x} + 11 = 12$ $5^{x} = 1$ $=5^{0}$ x = 0

© Cengage Learning Australia Pty Ltd 2018

g	$6^{x} + 9 = 225$ $6^{x} = 216$ $= 6^{3}$ x = 3
h	$4^{x} = \frac{1}{4}$ $= 4^{-1}$ $x = -1$
i	$4^{x} = \frac{1}{16}$ $= 4^{-2}$ $x = -2$
j	$4^{x} = \frac{1}{64}$ $= 4^{-3}$ $x = -3$
k	$2^{x} = \frac{1}{2}$ $= 2^{-1}$ $x = -1$
I	$2^{x} = \frac{1}{4}$ $= 2^{-2}$ $x = -2$
m	$2^{x} = \frac{1}{8}$ $= 2^{-3}$ $x = -3$
n	$16x^{4} = 400x^{2}$ $16x^{4} - 400x^{2} = 0$ $16x^{2}(x^{2} - 25) = 0$ $x^{2} = 0 \text{ or } x^{2} - 25 = 0$ x = 0 $x = \pm 5$

o
$$8^{2x+1} = 4^{1-x}$$

 $(2^3)^{2x+1} = (2^2)^{1-x}$
 $2^{6x+3} = 2^{2-2x}$
 $6x+3 = 2-2x$
 $8x = -1$
 $x = -\frac{1}{8}$
p $\sqrt{50}x - \sqrt{18}x = \sqrt{2}$
 $5\sqrt{2}x - 3\sqrt{2}x = \sqrt{2}$
 $2\sqrt{2}x = \sqrt{2}$
 $x = \frac{\sqrt{2}}{2\sqrt{2}}$
 $= \frac{1}{2}$
q $5\sqrt{2}\sqrt{x} - 3\sqrt{2}\sqrt{x} = \sqrt{2}$
 $\sqrt{x} = \frac{\sqrt{2}}{2\sqrt{2}}$
 $= \frac{1}{2}$
 $\sqrt{x} = \frac{\sqrt{2}}{2\sqrt{2}}$
 $= \frac{1}{2}$
 $x = \frac{1}{4}$
r $(x^3+5)(x^3-5) = 704$

$$(x^{3} + 5)(x^{3} - 5) = 704$$

$$x^{6} - 25 - 704 = 0$$

$$x^{6} - 729 = 0$$

$$(x^{3} - 27)(x^{3} + 27) = 0$$

$$x^{3} - 27 = 0 \text{ or } x^{3} + 27 = 0$$

$$x^{3} = 27 \ x^{3} = -27$$

$$x = 3 \qquad x = -3$$

- **a** 12 000
- **b** 12 610 000
- **c** 0.000 26
- **d** 6
- **e** 12 630

Question 4

а	After translation,	$y = 2^{x+3} = 8 \times 2^x$
b	After translation,	$y = 3^x - 2$

Question 5

From graph,

$$5^{1.6} \approx 13$$

 $5^{2.4} \approx 13$
 $5^{2.5} \approx 13$

Question 6

$$(25 \times 5^{x} - 1)(5^{x} - 1) = 0$$

$$25 \times 5^{x} - 1 = 0 \text{ or } 5^{x} - 1 = 0$$

$$5^{2} \cdot 5^{x} = 1 \qquad 5^{x} = 1$$

$$5^{x} = \frac{1}{5^{2}} = 5^{0}$$

$$= 5^{-2} \qquad x = 0$$

$$x = -2$$

If
$$m = 2^{x}, m^{2} - 5m + 4 = 0$$

 $(2^{x} - 1)(2^{x} - 4) = 0$
 $2^{x} - 1 = 0$ or $2^{x} - 4 = 0$
 $2^{x} = 1$
 $x = 0$
 $x = 2$

Question 8

$$T = ka^{t}$$

 $k = 18.9$ (t = 0 at 10am)

a
$$t = 2, T = 16.3$$

 $16.3 = 18.9a^2$
 $a^2 = \frac{16.3}{18.9}$
 $a = 0.93$

b

 $T = 18.9(0.93)^{t}$ $32 = 18.9(0.93)^{t}$ By classpad, t = -7.26

7.26 half hours = 3.63 hours 10:00-3.63 = 6.37 hours = 6:22.2 hours Time of death $\approx 6:22$ a.m.