SADLER MATHEMATICS METHODS UNIT 2

WORKED SOLUTIONS

Chapter 2 Exponential functions

Exercise 2A

Question 1

Question 2

Question 3

Question 4

Question 6

Question 7

A constant second difference of 2 indicates a quadratic relationship with $a = 1 \Rightarrow y = x^2 + bx + c$

When $x = 0$, $y = 1 \implies c = 1$

When $x = 1$

$$
y = 1(1)2 + b(1) + 1 = 2
$$

2 + b = 2
b = 0

Required equation $y = x^2 + 1$

A constant ratio of 4 indicates the relationship is exponential, base $4. \Rightarrow y = a \times 4^x$

 $y = a(4^0) = 1$ When $x = 0$, $a=1$

Required equation $y = 4^x$

Question 9

A constant first difference of 2 indicates a linear relationship with a gradient of 2. \Rightarrow $y = 2x + c$

When $x = 0$, $y = 3 \implies c = 3$

Required equation $y = 2x + 3$

A constant second difference of 4 indicates a quadratic relationship with $a = 2$. $\Rightarrow y = 2x^2 + bx + c$

When $x = 0$, $y = 0 \implies c = 0$

 $y = 2(1)^2 + b(1) = 2$ When $x = 1$, $2 + b = 2$ $b=0$

Required equation $y = 2x^2$

Question 11

A constant ratio of 8 indicates the relationship is exponential, base $8. \Rightarrow y = a \times 8^x$

 $y = a(8^0) = 1.5$ When $x = 0$,

 $a = 1.5$

Required equation $y = 1.5 \times 8^x$

A constant ratio of 5 indicates the relationship is exponential, base 5. \Rightarrow $y = a \times 5^{x}$

 $y = a(5^0) = 1$ When $x = 0$, $a=1$

Required equation $y = 5^x$

Question 13

A constant second difference of 2 indicates a quadratic relationship with $a = 1$. $\Rightarrow y = x^2 + bx + c$

When $x = 0$, $y = 0 \implies c = 0$

 $y = 1(1)^2 + b(1) = 2$ When $x = 1$, $1 + b = 2$ $b=1$

Required equation $y = x^2 + x$

A constant ratio of 6 indicates the relationship is exponential, base 6. $\Rightarrow y = a \times 6^x$

 $y = a(6^0) = 1$ When $x = 0$, $a=1$

Required equation $y = 6^x$

Question 15

A constant ratio of 2 indicates the relationship is exponential, base 2. $\Rightarrow y = a \times 2^x$

 $y = a(2^0) = 3$ When $x = 0$, $a=3$

Required equation $y = 3 \times 2^x$

No constant differences or ratios present. A reciprocal relationship exists $\Rightarrow xy = 60$.

Question 17

A constant third difference of 6 indicates a cubic relationship with $a = 1$. $\Rightarrow y = ax^3 + bx^2 + cx + d$. (See Miscellaneous Exercise 1 Question 1)

When $x = 0$, $y = 1 \implies d = 1$ We currently have $y = x^3 + bx^2 + cx + 1$ When $x = 1$, $y = 1 + b + c + 1 = 2$ $b + c = 0$ When $x = 2$, $y = 8 + 4b + 2c + 1 = 9$ $4b + 2c = 0$ By simultaneous equations or CP, $b = 0, c = 0$

Required equation $y = x^3 + 1$

Alternatively students may have noticed the numbers are all one more than the cubic numbers 1, 8, 27, 64…

A constant first difference decreasing by 3 indicates a linear relationship with a gradient of -3. \Rightarrow y = $-3x + c$

When $x = 0$, $y = 20 \implies c = 20$

Required equation $y = -3x + 20$

Question 19

All graphs pass through (0, 1). The graphs share the same basic shape. As the *x* values increase, so do the *y* values without limit. As the *x* values decrease so do the *y* values, approaching but never touching the *x*-axis. We say it is asymptotic to the *x*-axis. The values are always positive. As the value of *a* increases, so does the rate at which the *y* values increase.

The graph becomes steeper as *a* increases.

Changing the value of *a* changes the *y*-intercept

of the function to (0, *a*).

It appears to stretch or vertically dilate the original function.

Question 21

The value of *k* translates the graph vertically.

Graphs of the form $y = a^x + k$ translate $y = a^x$ *k* units upwards.

Graphs of the form $y = a^x - k$ translate $y = a^x$ *k* units downwards. The distance of the *y*-intercept from (0, 1) indicates the value of *k*. Similarly the distance of the horizontal asymptote from *x*-axis will indicate the value of *k*.

It is possible for these graphs to have an *x*-intercept.

Changing the value of *k* translates the graph horizontally.

Graphs of the form $y = a^{x+k}$ translate $y = a^x$ *k* units left.

Graphs of the form $y = a^{x-k}$ translate $y = a^x$ *k* units right.

Question 23

a

The *y* values are doubling \Rightarrow $y = 2^x$

b

The *y* values are tripling \Rightarrow $y = 3^x$

 $x = 11.984$ In approximately 12 years.

 $x = 28.011$ In approximately 28 years.

 $x = 39.995$ In approximately 40 years.

Question 25

y values are tripling indicating $y = 3^x$.

The point (2, 1) indicates a horizontal translation of 2 units to the right \Rightarrow $y = 3^{x-2}$.

b

a

The differences between *y* values are 1, 2, 4 indicating $y = 2^x$.

The point (0, 3) indicates a vertical translation of 2 units \Rightarrow $y = 2^{x} + 2$.

The *y* values are 1, 2, 4 indicating $y = 2^x$.

The point (2, 1) indicates a horizontal translation of 2 units to the right $\Rightarrow y = 2^{x-2}$.

d

The graph appears to have an asymptote at $y = -2$, suggesting $y = a^x - 2$.

If we translate the graph up two units, the *y* values become 1, 3, 9 clearly indicating $a = 3$.

 $y = 3^x - 2$

e

The graph appears to have an asymptote at $y = 2$, suggesting $y = a^x + 2$.

If we translate the graph down two units, the *y* values become 1, 3, 9 clearly indicating $a = 3$.

 $y = 3^x + 2$

The point (–1, 3) suggests a horizontal translation of 1 unit left \Rightarrow $y = 3^{x+1} + 2$.

The graph appears to have an asymptote at $y = -2$, suggesting $y = a^x - 2$.

If we translate the graph up two units, the *y* values become 1, 2, 4, 8 clearly indicating $a = 2$.

$$
y=2^x-2
$$

f

The point (2, –1) suggests a horizontal translation of 2 units right $\Rightarrow y = 2^{x-2} - 2$.

Exercise 2B

Question 1

Consider the period 1995 to 2000 and working with the population in millions:

 $26 = 18r^5$ $5 - \frac{26}{5}$ $\frac{26}{5}$ 18 18 $=1.076$ ≈ 1.08 $r^5 =$ *r* =

Consider the period 2000 to 2010:

$$
56 = 26r^{10}
$$

$$
r^{10} = \frac{56}{26}
$$

$$
r = \sqrt[10]{\frac{56}{26}}
$$

$$
= 1.079
$$

$$
\approx 1.08
$$

Consider the period 2000 to 2007:

$$
9000 = 12400r^{7}
$$

\n
$$
r^{7} = \frac{9000}{12400}
$$

\n
$$
r = \sqrt[7]{\frac{9000}{12400}}
$$

\n
$$
= 0.955
$$

\n
$$
7500 = 9000r^{7}
$$

\n
$$
r^{4} = \frac{7500}{9000}
$$

\n
$$
r = \sqrt[4]{\frac{7500}{9000}}
$$

\n
$$
= 0.955
$$

A ratio of 0.955 is equivalent to a 4.5% decrease each year.

Question 3

 $\frac{45.8}{15}$ = 1.0178 45 $\frac{46.6}{15.8}$ = 1.0175 45.8 $\frac{47.5}{1.5}$ = 1.0193 46.6 = = =

Average of three growth rates ≈ 1.0182 , so we will assume an 18% growth rate overall.

In 2027, 14 years of growth has occurred.

 $P = 47.5 \times 1.018^{14}$ 60.98 million =

Approximately 61 million.

 $\frac{16500}{10000} = 0.917$ 18100 $\frac{15200}{1.5500} = 0.921$ 16500 $\frac{14000}{15000} = 0.921$ 15200 = = =

Let us assume a growth rate of 92% on each year, (decreasing by 8% each year).

IF we consider 2010 to be $t = 0$, 2023 can be represented as $t = 13$.

 $P = 18 \times 0.92^{13}$ $= 6.1$

We could expect approximately 6 100 animals.

Question 5

```
a N = Ak^{N-1989}80 = Ak^0When N = 1989,
A = 80170 = 80k^{10}_{10} _{-} 170
       10^{170}170^{0.1}When N = 199980
           80
     =\left(\frac{170}{80}\right)=1.08k^{10} =k =
```
b 8% increase

c $N = 80 \times 1.08^{(2024 - 1989)}$ $= 80 \times 1.08^{35}$ \approx 1200

After 6 days \Rightarrow 450 = ak^6 After 4 days \Rightarrow 530 = ak^5 6 5 $530 = a(0.85)^5$ 5 450 530 $k = 0.85$ 530 0.85 $P = ak^n$ *ak ak* $a =$ =

$$
0.85
$$

= 1194

The initial population was approximately 1200 frogs.

Question 7

a 68 **b** 29 **c** $68 = ka^3$ $29 = ka^8$ $29 - 5$ $\frac{29}{2}$ 68 68 $= 0.84$ $= a$ $a =$ $68 = k(0.84)^3$ $k \approx 115$ **d** $P = 115 \times 0.84^{\circ}$ $=115$ **e** $10 = 115(0.84)^t$ By classpad $t = 14$

a $P = ka^t$

The initial value is $80 \Rightarrow k = 80$

When
$$
t = 3
$$
, $P = 62$
\n
$$
62 = 80a^3
$$
\n
$$
a^3 = \frac{62}{80}
$$
\n
$$
a = \sqrt[3]{\frac{62}{80}}
$$
\n
$$
= 0.92
$$

b

 $P = 80(0.92)^3$ In 2017, $t = 3$ $= 27$

c $20 = 80(0.92)^t$ By classpad, $t = 16.6$ During the 17th year, 2021

Question 9

- **a** When t=0, $P_A = 10000$ and $P_B = 1000$
- **b** $P_A = 10000(0.75)^3 = 4218.75$ $P_B = 1000(1.09)^3 = 1295.03$ $P_A = 4200$ and $P_B = 1300$
- **c** $1000(0.75)^t = 1000(1.09)^t$ By classpad, $t = 6.2$

a Initial value $850 \Rightarrow k = 850$

When
$$
t = 3, N = 630
$$

\n
$$
630 = 850a^3
$$
\n
$$
a^3 = \frac{630}{850}
$$
\n
$$
a = \sqrt[3]{\frac{630}{850}}
$$
\n
$$
= 0.905
$$

b $212.5 = 850(0.905)^t$ By classpad, $t = 13.88$ after 14 weeks

Miscellaneous exercise two

Question 1

- **a** II
- **b** IV **c** III
-
- **d** I
- **e** III
- **f** IV
- **g** III
- **h** I

Question 2

a $x^2 = 49$ $x = \pm 7$ **b** $x^2 = 100$ $x = \pm 10$ **c** $x^3 = 1000$ $x = 10$ **d** $= 2^2$ $2^x = 4$ $x = 2$ **e** $= 3⁴$ $3^x = 81$ $x = 4$ **f** $=5^{0}$ $5^x + 11 = 12$ $5^x = 1$ $x = 0$

© Cengage Learning Australia Pty Ltd 2018 21

$$
\theta
$$

6
\n
$$
8^{2x+1} = 4^{1-x}
$$
\n
$$
(2^3)^{2x+1} = (2^2)^{1-x}
$$
\n
$$
2^{6x+3} = 2^{2-2x}
$$
\n
$$
6x + 3 = 2 - 2x
$$
\n
$$
8x = -1
$$
\n
$$
x = -\frac{1}{8}
$$
\n**p**
\n
$$
\sqrt{50}x - \sqrt{18}x = \sqrt{2}
$$
\n
$$
5\sqrt{2}x - 3\sqrt{2}x = \sqrt{2}
$$
\n
$$
2\sqrt{2}x = \sqrt{2}
$$
\n
$$
x = \frac{\sqrt{2}}{2\sqrt{2}}
$$
\n
$$
= \frac{1}{2}
$$
\n**q**
\n
$$
5\sqrt{2}\sqrt{x} - 3\sqrt{2}\sqrt{x} = \sqrt{2}
$$
\n
$$
2\sqrt{2}\sqrt{x} = \sqrt{2}
$$
\n
$$
\sqrt{x} = \frac{\sqrt{2}}{2\sqrt{2}}
$$
\n
$$
= \frac{1}{2}
$$
\n
$$
x = \frac{1}{4}
$$
\n
$$
(x^3 + 5)(x^3 - 5) = 704
$$

r
$$
(x^3 + 5)(x^3 - 5) = 704
$$

\r\n $x^6 - 25 - 704 = 0$
\r\n $x^6 - 729 = 0$
\r\n $(x^3 - 27)(x^3 + 27) = 0$
\r\n $x^3 - 27 = 0$ or $x^3 + 27 = 0$
\r\n $x^3 = 27$ $x^3 = -27$
\r\n $x = 3$ $x = -3$

- **a** 12 000
- **b** 12 610 000
- **c** 0.000 26
- **d** 6
- **e** 12 630

Question 4

b After translation, $y = 3^x - 2$

Question 5

From graph,

 $5^{1.6} \approx 13$ $5^{2.4} \approx 13$ $5^{2.5} \approx 13$

Question 6

$$
(25 \times 5^{x} - 1)(5^{x} - 1) = 0
$$

\n
$$
25 \times 5^{x} - 1 = 0 \text{ or } 5^{x} - 1 = 0
$$

\n
$$
5^{2} \cdot 5^{x} = 1 \qquad 5^{x} = 1
$$

\n
$$
5^{x} = \frac{1}{5^{2}} \qquad = 5^{0}
$$

\n
$$
= 5^{-2} \qquad x = 0
$$

\n
$$
x = -2
$$

If
$$
m = 2^x
$$
, $m^2 - 5m + 4 = 0$
\n $(2^x - 1)(2^x - 4) = 0$
\n $2^x - 1 = 0$ or $2^x - 4 = 0$
\n $2^x = 1$
\n $x = 0$
\n $x = 2$

Question 8

$$
T = kat
$$

k = 18.9 (t = 0 at 10am)

a
$$
t = 2, T = 16.3
$$

\n $16.3 = 18.9a^2$
\n $a^2 = \frac{16.3}{18.9}$
\n $a = 0.93$

b

 $T = 18.9(0.93)^t$ $32 = 18.9(0.93)^t$ By classpad, $t = -7.26$

7.26 half hours $= 3.63$ hours $10:00 - 3.63 = 6.37$ hours $= 6:22.2$ hours Time of death $\approx 6:22$ a.m.